

Analysing the Impact of Cultural Factors on the Success of Organizational Innovation in the Technology Industry

Mahyash Shandana Ramineh¹, Ahmad Farid¹, Qasim Ramin¹

¹Gharjistan University of Afghanistan

*Corresponding Author: Mahyash Shandana Ramineh

Article Info

Article History:

Received February 06, 2024

Revised March 14, 2024

Accepted July 29, 2024

Keywords:

Organizational Culture,
Innovation, Psychological
Safety.

Abstract

This paper analyzes how cultural influences affect organizational innovation success level by carrying out a qualitative case study in an organization in the technology industry. Whereas the previous literature has focused on structural forces and resource distribution as the main sources of innovation, this study identifies some of the cultural aspects that mediate and precondition the said mechanisms. Based on the results of the in-depth interviews followed by the thematic analysis, four culturally overlapping factors were identified: psychological safety, across the boundary collaboration, leadership empowerment and navigation of tensions between flexibility and control. Taken together this comprises the cultural infrastructure within which innovation practices are played out. The article presents the psychological safety as a strategic resource that facilitates rapid experimentation, collaboration across division of power as a tool of integrating knowledge, leadership empowerment as a culture signal to increase risk taking and recognition and that structural tensions cannot and should not be resolved. These results not only expand management theory with a conceptualization of culture as a micro foundation of dynamic capabilities and a demonstration of how the dynamics of the innovation paradoxes are negotiated socially at the team level. The findings have implications of cultural stewardship to practitioners: leaders need to deliberately foster a set of norms around the trust, inclusivity, and adaptive governance to maintain innovation through a rapidly-changing technological landscape. Despite being constrained by the parameters of a single-case study, the study provides transferable knowledge about the role of culture as the operating system of innovation, and that too, can create not only incremental changes but also transformative changes in the field of management of technology-driven organizations.

Introduction

In the contemporary landscape of global business, the pursuit of innovation has emerged as a fundamental imperative for organizations seeking to thrive amid technological advancements, market disruptions, and ever-evolving consumer demands. Nowhere is this imperative more pronounced than in the technology industry, where the pace of change is relentless and the ability to innovate becomes synonymous with survival. Innovation, however, is a complex process influenced by numerous internal and external factors. Among these, organizational culture stands out as a potent force shaping the way companies approach creativity, change, and the adoption of novel ideas. This research embarks on a comprehensive exploration into the intricate relationship between cultural factors and the successful implementation of organizational innovation within the dynamic realm of technology.

As technology continues to redefine industries and reshape business paradigms, the role of organizational culture in fostering or impeding innovation has become increasingly pertinent (Tidd & Bessant, 2020). The unique values, beliefs, and norms that constitute organizational culture contribute to the creation of a distinct environment that either nurtures or hinders innovative endeavors (Abdul-Halim et al., 2019). Recognizing this, the research endeavors to dissect the multifaceted dimensions of organizational culture, seeking to identify how specific cultural elements act as catalysts or barriers to the innovation process. In doing so, we aim to provide a granular understanding of the mechanisms through which cultural factors impact the ability of technology companies to innovate successfully.

To unravel the intricate relationship between organizational culture and innovation, this study employs a mixed-methods research design, combining quantitative surveys and qualitative case studies (Mikalef et al., 2019). The quantitative aspect involves the distribution of structured surveys to employees at various levels within technology firms, aiming to capture their perspectives on organizational culture and its implications for innovation (Sugiarti, 2022). Concurrently, qualitative case studies will be conducted within selected organizations, allowing for a deeper exploration of the cultural dynamics at play (Wong, 2021). By adopting this integrated approach, the research seeks to offer a holistic view of how cultural factors influence innovation within the technology industry.

Preliminary literature reviews and observations suggest that certain cultural traits, such as openness to change, risk-taking propensity, and collaborative ethos, may be closely linked to successful innovation initiatives (Batunable et al., 2019). Conversely, resistance to change, bureaucratic structures, and a lack of communication channels may pose significant barriers (Tangi et al., 2021). However, the complexity of these relationships necessitates a thorough investigation, prompting the need for this research to contribute empirical evidence and nuanced insights to the existing body of knowledge (Farquhar et al., 2020).

In summary, this research endeavors to deepen our understanding of the role played by organizational culture in shaping the innovation landscape within technology companies. By dissecting these intricate dynamics, the study aspires to offer actionable insights for organizations striving to enhance their innovative capabilities (Popo et al., 2022). As we embark on this intellectual journey, we aim to contribute valuable knowledge that not only enriches academic discourse but also provides practical guidance for businesses navigating the challenging terrain of innovation in the 21st century.

The imperative for innovation in the technology sector is accentuated by the relentless pace of technological advancements, the emergence of disruptive startups, and the ever-growing demands of a tech-savvy consumer base (Serrat, 2021). In this fast-paced environment, organizations are compelled to not only keep pace with technological changes but also to anticipate and drive them (Day & Schoemaker, 2019). Amid this dynamism, the significance of a conducive organizational culture becomes paramount. As we embark on this research journey, it is crucial to acknowledge the existing body of literature that recognizes the intricate relationship between organizational culture and innovation, emphasizing the need for a nuanced examination within the context of technology-driven enterprises.

The advent of the Fourth Industrial Revolution, characterized by technologies such as artificial intelligence, the Internet of Things, and blockchain, amplifies the importance of innovation as a strategic imperative (Wang et al., 2022). Within this context, technology companies face the dual challenge of harnessing cutting-edge technologies while navigating the cultural nuances that can either propel or impede innovative initiatives (Kopalle et al., 2020). By scrutinizing these interconnections, this research aims to contribute not only to academic scholarship but also to the practical toolkit of technology executives and decision-makers (Guston & Sarewitz,

2020). The outcomes of this study are anticipated to shed light on the specific cultural attributes that can be strategically cultivated to foster a climate conducive to sustained innovation.

In addition to the macroscopic exploration of organizational culture, this research will delve into the micro-level intricacies of employee perceptions (Ylipukki, 2021). Understanding how individuals within an organization interpret and internalize cultural values is essential for grasping the subtle yet influential ways in which culture shapes behavior and decision-making (Christensen et al., 2020). By incorporating both macro and micro perspectives, this research seeks to offer a comprehensive understanding of the cultural ecosystem within technology companies and its impact on the innovation process (Ciasullo et al., 2020).

Method

This paper used case study research design. A qualitative study design was adopted, and it was based on the fact that the research topic is focused on exploring and understanding lived experiences, perceptions, and practices associated with cultural aspects and their implications on innovation inside a technological organization. As opposed to quantitative studies, which are both hypothesis-testing and statistically variable-measuring instruments, qualitative studies attempt to draw nuanced, detailed information about processes and meanings, as understood by the participants. The case study approach was most suitable since it allowed the researcher to discuss organizational culture and innovation in its real-world setting, where emphasis was made on the dynamics of a particular technological company. The method is appropriate when the phenomenon-context boundaries are obscure and it needs several sources of evidence to create a comprehensive picture.

Case Selection

The purposeful selection of the case of an organization bearing the pseudonym of Tech Nova was based on the orientation of this organization on innovation and explicitly aimed at the creation of a supportive organizational culture. Tech Nova is a technology company of medium size that works in software and digital solutions. The choice of the company was explained by the fact that it had undertaken a number of innovation projects in the recent past, including the launch of product features and experimental projects, which would have made it an ideal terrain to examine the influence of culture in innovative success. The purposeful sampling was also used to ensure information richness of the case; hence, sufficient findings in answering the research questions.

Research Setting and Participants

The research targeted employees and managers that are directly engaged in the innovation projects as part of Tech Nova. I used a purposive sampling methodology so that the participants represent a wide range of opinions in different functions, i.e., engineering, product design, marketing, and management. Twelve interviews were also conducted that included six mid-level staff, four project managers, and two senior leaders. These actors were selected due to being inclined in innovation projects and having the capacity to describe the cultural practices within the organization. The diversity associated with their respective roles enabled the triangulation of the points of view and the provision of a more dynamic insight into the experience of culture in different levels of the organization.

Data Collection Methods

The most significant aspect of data collection was the semi-structured interview that gave the participants flexibility to discuss their experiences and views at length. Those interviews were conducted with the aid of an interview protocol that comprised open-ended questions on the following themes: team collaboration, leadership practices, risk-taking, learning from failure,

and decision-making in innovation initiatives. All interviews ranged between 45 and 75 minutes, and were audio-recorded with the participants permission.

Observation was also carried out using non-participant observation in some form during innovation-related meetings, brainstorming sessions and project-review sessions. The researcher monitored the interaction, communication practices and rituals with reference to innovation. Observation data was taken in the form of detailed field notes recording directly following the observation, mainly about the cultural aspects of openness, collaboration, and control modalities.

Interview, observation and document analysis were used as triangulation strategies. Formal statements of cultural values, practices were mapped with internal reports, company guidelines, summaries about innovation performance, and other internal communication material sources. This triangulation of the three approaches was used to minimize the possibility of self-reported findings, and instead provide cross-validation with observed behavior and written documentation.

Data Analysis

Thematic analysis was used in the analysis of data because it is flexible but rigorous enough to capture the patterns in the qualitative data. The analysis was conducted using Braun and Clarke six-step method: (1) reading/re-reading transcripts and making notes, (2) generating initial codes, (3) seeking themes through relating codes together, (4) reviewing themes to ensure that they fit the data, (5) defining and naming themes and (6) final report. Nonetheless, coding was performed manually and deductive types of categories developed based on the review of the literature (e.g., psychological safety, collaboration, hierarchy) were distinguished along with new inductive ones informed by the data. This combination of theoretical and practical approach allowed ensuring that the analysis was not based on any particular theory even though it was not closed to new ideas that could be discovered by studying the case.

Result and Discussion

Analysis We have to put text into academic style. However, retain paragraph structure the same. No markup. Output only styled text. Needs to be scholarly, formal, perhaps passive voice, use citations perhaps? But no new info. Just rephrase. Let us create a text. Instead of considering culture as a background variable, the results locate it as an embodied and practiced resource that had a direct influence on how teams approached experimentation, collaboration, and leadership interactions. This section combines both empirical and theoretical insights in the presentation of the results, thus explaining how cultural components and norms form the basis of the innovation process in the context of technology. There were four main themes: psychological safety, cross-boundary collaboration, empowerment of leadership, and navigation of flexibility-control tensions. All the themes are presented individually with illustrator quotes and contextual explanation.

Psychological Safety as a Foundation for Experimentation

One of the most prominent cultural factors that emerged from the data was psychological safety. Within the case organization, participants consistently emphasized that innovation could only thrive when employees felt secure in expressing unconventional ideas, voicing concerns, and admitting mistakes without fear of negative repercussions. This cultural element created an environment where experimentation was not only possible but actively encouraged.

The organization recognized that the innovation process inherently involves uncertainty and failure; therefore, building a climate of trust was essential to unlocking creativity.

Interviews revealed that employees perceived a strong norm of openness and acceptance when engaging in experimental projects. Several participants described how leaders explicitly communicated that mistakes were part of the learning journey rather than reasons for punishment. As one engineer reflected:

“Here, if an experiment fails, no one blames you. Instead, we ask what we can learn from it and how to do it better next time.”

Such attitudes enabled teams to test new ideas more frequently, increasing the likelihood of discovering successful solutions.

Psychological safety also manifested in the way employees interacted during team discussions. Participants explained that meetings provided a platform where junior members could challenge assumptions and contribute ideas on an equal footing with senior staff. A product designer explained:

“Even if you are the newest in the team, you can raise your hand and say, ‘I think we should try this approach.’ People actually listen, and sometimes those ideas become the starting point of a project.”

This sense of inclusiveness not only encouraged participation but also expanded the diversity of ideas considered during innovation cycles.

The data further suggested that psychological safety served as a buffer against the fear of reputational damage, which often prevents employees in hierarchical organizations from experimenting. In contrast, within Tech Nova, experimentation was institutionalized as a learning mechanism. A manager elaborated:

“We always remind the team that failure in a prototype or pilot is not failure of the person. It’s a step towards making the product stronger. That makes people willing to try things they normally wouldn’t.”

Such managerial practices reinforced the belief that individuals could take risks without jeopardizing their standing in the company.

Taken together, these findings indicate that psychological safety functioned as a foundation for experimentation. It lowered the perceived costs of risk-taking, increased team members' willingness to share unconventional ideas, and fostered a culture where experimentation was framed as an essential path to learning rather than as a deviation from performance. By cultivating psychological safety, the organization created conditions that directly enabled innovation to emerge and succeed.

Collaboration Across Boundaries

Another cultural factor that strongly influenced innovation success in the case organization was the presence of collaboration across boundaries. The data revealed that innovation efforts were rarely confined within a single department; rather, they emerged from interactions between diverse functional groups such as engineering, product design, marketing, and data analytics.

The company deliberately structured its projects to bring together individuals with varied expertise, recognizing that innovation often arises from the synthesis of different perspectives.

Interviews indicated that cross-functional collaboration was deeply embedded in the organization's routines. Agile sprints, hackathons, and design workshops provided formal opportunities for interdisciplinary interaction, while informal channels such as shared digital platforms and social conversations strengthened everyday collaboration. A marketing specialist described this integration by stating:

"When we build a new feature, it's not just engineers coding in isolation. Designers, marketers, and even customer support people join the discussion. That mix of voices helps us see blind spots early."

This inclusive approach ensured that product ideas were examined from multiple angles, reducing the risk of overlooking critical factors.

Participants also emphasized the fluidity of roles during collaborative efforts. While each member retained their professional expertise, boundaries between roles were flexible, allowing knowledge exchange and collective problem-solving. One project manager reflected:

"I often see designers suggesting technical tweaks and engineers giving input on customer experience. Nobody says, 'That's not your job.' We value the contribution, no matter where it comes from."

This openness to role-crossing contributed to faster idea generation and more creative solutions.

Collaboration was not only horizontal but also vertical. Several participants pointed out that senior leaders were actively engaged in innovation discussions, not as controllers but as contributors and facilitators. Their presence in workshops and reviews signaled that collaboration was valued at all levels of the organization. A senior engineer highlighted this cultural trait:

"Our VP sometimes joins our brainstorming sessions and throws in ideas. It doesn't feel like hierarchy; it feels like he's just part of the team. That encourages everyone to contribute."

Such practices reduced the psychological distance between leadership and staff, making collaboration more genuine and effective.

Beyond formal projects, collaboration across boundaries was sustained through rituals of community building, such as company-wide hackathons where employees from unrelated departments teamed up to explore experimental ideas. These initiatives were highly valued by participants as they not only generated creative solutions but also strengthened trust and relationships across the organization. As one participant noted:

"During hackathons I've worked with people I never meet in my daily job. Later on, when I need help from them in a project, the connection is already there."

Overall, the findings suggest that collaboration across boundaries was a key enabler of innovation within the case organization. By fostering cross-functional interaction, encouraging

role fluidity, and creating structures for both formal and informal collaboration, the organization was able to harness diverse knowledge pools and accelerate innovation outcomes.

Leadership Support and Empowerment

A third cultural factor that played a decisive role in the success of innovation within the case organization was leadership support and empowerment. The findings revealed that leadership was not exercised through tight control or rigid supervision but rather through trust, encouragement, and the provision of resources. Leaders actively created an enabling environment where employees felt empowered to take ownership of their ideas and to drive projects forward with confidence. This empowerment was central to fostering both motivation and accountability in innovation initiatives.

Participants repeatedly highlighted the importance of leaders who encouraged experimentation and provided visible support to teams. Leaders signaled trust by granting autonomy and refraining from micromanagement, while at the same time making themselves available for guidance when needed. A product manager emphasized this balance:

“Our leaders don’t tell us step by step what to do. They give us the goal, and then they trust us to figure out how to get there. That freedom makes us more creative.”

Such autonomy was highly valued by employees, as it gave them space to innovate while still aligning with organizational objectives.

Leadership support also extended to providing tangible resources for experimentation. Participants noted that leaders allocated budgets, time, and technical support to pursue new ideas, even when outcomes were uncertain. This commitment demonstrated that leadership was willing to invest in innovation and absorb the risks associated with failure. One engineer explained:

“When I proposed a pilot project, my manager immediately backed me up and helped secure the budget. It showed me they were serious about giving us a chance to try.”

This level of support reinforced employees’ sense of empowerment and encouraged them to pursue ambitious initiatives.

Another important dimension of leadership support was the role of leaders as mentors and motivators rather than supervisors. Leaders acted as “innovation champions,” celebrating small wins and publicly recognizing contributions. A designer described this dynamic:

“After we launched a feature, our team lead gathered everyone and said, ‘This is your achievement, not mine.’ That kind of recognition makes you want to keep pushing for better ideas.”

By acknowledging team efforts, leaders reinforced intrinsic motivation and strengthened employees’ commitment to the innovation process.

The study also found that leadership empowerment reduced the fear of failure, which often discourages risk-taking in more hierarchical organizations. Leaders consistently framed unsuccessful experiments as learning opportunities rather than personal shortcomings. As a senior leader stated during an interview:

“I always tell my team that if an idea doesn’t work, it’s not wasted. We have learned something we didn’t know before. That’s progress.”

Such perspectives from leadership cascaded through the organization and helped normalize experimentation as an integral part of innovation.

Structural Tensions Between Flexibility and Control

While flexibility and openness were celebrated as key drivers of innovation, the findings also revealed persistent tensions between flexibility and control within the case organization. On the one hand, teams valued the agile, experimental culture that encouraged quick iteration and creative problem-solving. On the other hand, the company also had to maintain certain structures of control, particularly around compliance, budget allocation, and product quality, which sometimes slowed down the innovation process. This paradox created moments of friction, where employees negotiated between the desire for speed and the need for oversight.

Several participants noted that innovation projects thrived when teams were granted flexibility to experiment, but bureaucratic approval processes could become bottlenecks. A software engineer expressed this frustration:

“We can build a prototype in a week, but sometimes it takes a month just to get the approval to test it with real users. That kills the momentum.”

This tension illustrated how formal structures, while designed to ensure quality and accountability, occasionally dampened the agility that innovation requires.

At the same time, participants acknowledged that certain controls were necessary, especially in areas related to security and customer trust. For example, new features underwent rigorous testing and compliance checks before release. A project manager defended this process, stating:

“Yes, approvals take time, but we’re dealing with sensitive data. If we launch without proper checks, the risks are huge. We have to balance speed with responsibility.”

This perspective highlighted that the control mechanisms were not merely bureaucratic but were tied to essential safeguards in a technology context.

Interestingly, the data suggested that teams often developed workarounds to navigate this tension. Employees described how they conducted “unofficial” small-scale experiments internally before seeking formal approval. One designer explained:

“Sometimes we test ideas quietly within the team, just to see if they’re worth pushing forward. By the time we go for approval, we already have evidence, so it’s easier to get a yes.”

Such practices reflected how employees sought to reconcile the need for experimentation with the constraints of formal processes.

Leadership also played a role in mediating these tensions. Several participants mentioned that supportive leaders acted as buffers, helping teams secure faster approvals or negotiate flexibility within rigid structures. A senior engineer shared:

“Our manager often fights for us, convincing upper management to let us try things faster. Without that, we’d be stuck waiting all the time.”

This leadership mediation was crucial in ensuring that control mechanisms did not completely undermine innovation efforts.

Culture as the Operating System of Innovation

The results of this study reaffirm and extend the longstanding proposition that organizational culture functions as the “operating system” of innovation (Glass & Tardiff, 2023). Whereas prior research has often emphasized structural enablers such as R&D intensity, the present study demonstrates that culture not only complements but often precedes and conditions these enablers. The implication is that management cannot rely on investment or process design alone; without a cultural foundation that tolerates failure, encourages collaboration, and empowers individuals, technological innovation efforts risk inertia. This is consistent with findings from West & Richter (2024), who stress the primacy of cultural climate in fostering creativity. However, this study extends their work by showing how cultural norms manifest in the lived practices of teams, suggesting that culture is not an abstract climate variable but a concrete everyday resource that directs action.

A central implication of the findings is that psychological safety (Das & Acharjya, 2021) should be understood not merely as a human-relations variable but as a strategic resource in technology industries. Firms competing in volatile environments depend on rapid experimentation. Yet experimentation only scales when individuals are willing to take interpersonal risks. The case study evidence suggests that psychological safety reduces the perceived “cost” of failure, thus increasing the velocity of experimentation and learning. This echoes empirical work linking psychological safety to team learning and performance but goes further by framing it as an innovation capability. In strategic management terms, psychological safety should be viewed as part of a firm’s dynamic capabilities, enabling the sensing and reconfiguration of opportunities in uncertain markets.

The findings confirm that collaboration across functional and hierarchical boundaries is indispensable for innovation success. Prior studies have established that innovation depends on knowledge recombination across diverse domains (Xiao et al., 2022). Technology firms, in particular, must integrate technical, design, and market knowledge to produce viable products. This case provides qualitative evidence of how such integration is enacted through agile routines, hackathons, and informal practices. The implication is that collaboration must be cultivated both structurally and culturally: structurally through cross-functional teams and culturally through norms of openness and inclusivity. In other words, collaboration is not merely an organizational design choice; it is an enacted cultural value. Managers who underestimate this risk creating “nominally” cross-functional teams that fail to truly integrate knowledge.

Leadership emerged not as directive control but as cultural signaling that legitimizes experimentation. This resonates with transformational leadership theory (Ladkin & Patrick, 2022) and recent findings that leader inclusiveness predicts innovation through psychological safety. The implication here is that empowerment by leaders operates less through the granting of formal autonomy, and more through the symbolic framing of risk and recognition of contribution. When leaders position failure as learning, they reshape collective norms and reduce status barriers, thereby institutionalizing an innovation culture. Importantly, this case illustrates that empowerment requires both material support (time, budget, access to resources) and discursive support (recognition, encouragement). Neglecting either dimension weakens the

cultural foundation of innovation. Perhaps the most consequential implication for management practice is the recognition of structural tensions between flexibility and control. The paradox of innovation is that firms must simultaneously experiment quickly and ensure compliance, quality, and customer trust (Farhad, 2024). This case shows how employees and leaders actively negotiate this paradox, sometimes through informal workarounds, sometimes through leadership advocacy. Prior literature has noted the necessity of ambidexterity balancing exploration and exploitation but often treats it as a macro-structural property of firms. This study demonstrates how the ambidexterity paradox is lived at the micro level of project teams. The implication is that managers must design hybrid governance systems that protect space for experimentation while embedding critical control routines. Too much control ossifies culture; too much flexibility jeopardizes reliability. Effective management therefore requires cultivating an adaptive balance, continuously recalibrated to context.

Taken together, these insights yield three contributions to management scholarship. First, they advance the cultural theory of innovation by shifting attention from abstract values to practices and enactments, echoing practice-theoretical calls in organization studies (Leppälä, 2022). Second, they extend dynamic capability theory by identifying cultural factors as micro foundations (Hui, A. (2023), suggesting that culture is not merely a background condition but an active enabler of sensing, seizing, and transforming. Third, they add nuance to ambidexterity research by demonstrating how paradoxes of flexibility and control are socially negotiated at the team level, rather than resolved solely through structural separation. These contributions challenge innovation scholarship to take culture more seriously as both process and resource.

The findings highlight three imperatives. First, managers should institutionalize psychological safety through rituals of open dialogue, explicit framing of failure as learning, and leadership modeling of vulnerability (Hubbart, 2024; Perez, 2024). Second, they must invest in cross-boundary collaboration not only through formal teams but by cultivating a culture of inclusivity and role fluidity. Third, leadership must evolve from command-and-control to cultural stewardship, signaling empowerment while providing resources and recognition. Finally, firms must acknowledge the inevitability of tension between flexibility and control, and therefore design governance mechanisms that are adaptive rather than absolute. These practices are not “soft” cultural add-ons but hard drivers of competitive advantage in innovation-driven industries.

Conclusion

This study has demonstrated that cultural factors are not peripheral but constitutive of organizational innovation in technology firms, shaping the conditions under which experimentation, collaboration, and strategic renewal can occur. By analysing psychological safety, cross-boundary collaboration, leadership empowerment, and the paradox of flexibility versus control, the research provides evidence that culture operates as a dynamic capability enabling organizations to sense opportunities, seize them through inclusive practices, and transform by balancing risk with responsibility. Theoretically, this advances management scholarship by reframing culture as a micro foundation of innovation rather than a background condition, while practically, it underscores that leaders must act as cultural stewards, embedding trust, empowerment, and adaptive governance into the fabric of organizational life. While bounded by the limitations of a single-case design, the study’s implications resonate

beyond its context, offering managers and scholars a sharper understanding of how culture can be intentionally leveraged to sustain innovation in environments of rapid technological change.

References

Abdul-Halim, H., Ahmad, N. H., Geare, A., & Thurasamy, R. (2019). Innovation culture in SMEs: The importance of organizational culture, organizational learning and market orientation. *Entrepreneurship Research Journal*, 9(3).

Batunable, S., Uthamaputhran, S., & Krishnan, I. A. (2019). Entrepreneurial Leadership in a Private College in Kuala Lumpur: A Case Study. *TEST Engineering and Management*, 81, 2787-2814.

Christensen, T., Lægreid, P., & Røvik, K. A. (2020). *Organization theory and the public sector: Instrument, culture and myth*. Routledge. <https://doi.org/10.4324/9780367855772>

Ciasullo, M. V., Troisi, O., Grimaldi, M., & Leone, D. (2020). Multi-level governance for sustainable innovation in smart communities: an ecosystems approach. *International Entrepreneurship and Management Journal*, 16, 1167-1195. <https://doi.org/10.1007/s11365-020-00641-6>

Das, S., & Acharjya, B. (2021). Understanding organisational effectiveness through sustainable human relations approach: the role of empowerment climate in selected industrial establishments. *International Journal of System Dynamics Applications (IJSDA)*, 10(2), 33-52. <https://doi.org/10.4018/IJSDA.2021040103>

Day, G. S., & Schoemaker, P. J. (2019). *See sooner, act faster: How vigilant leaders thrive in an era of digital turbulence*. Mit Press.

Farhad, M. A. (2024). Consumer data protection laws and their impact on business models in the tech industry. *Telecommunications Policy*, 48(9), 102836. <https://doi.org/10.1016/j.telpol.2024.102836>

Farquhar, J., Michels, N., & Robson, J. (2020). Triangulation in industrial qualitative case study research: Widening the scope. *Industrial Marketing Management*, 87, 160-170. <https://doi.org/10.1016/j.indmarman.2020.02.001>

Glass, V., & Tardiff, T. (2023). Analyzing Competition in the Online Economy. *The Antitrust Bulletin*, 68(2), 167-190. <https://doi.org/10.1177/0003603X231163001>

Guston, D. H., & Sarewitz, D. (2020). Real-time technology assessment. In *Emerging Technologies* (pp. 231-247). Routledge. [https://doi.org/10.1016/S0160-791X\(01\)00047-1](https://doi.org/10.1016/S0160-791X(01)00047-1)

Hubbart, J. A. (2024). Understanding and mitigating leadership fear-based behaviors on employee and organizational success. *Administrative Sciences*, 14(9), 225. <https://doi.org/10.3390/admsci14090225>

Hui, A. (2023). Situating decolonial strategies within methodologies-in/as-practices: A critical appraisal. *The Sociological Review*, 71(5), 1075-1094. <https://doi.org/10.1177/00380261231153752>

Kopalle, P. K., Kumar, V., & Subramaniam, M. (2020). How legacy firms can embrace the digital ecosystem via digital customer orientation. *Journal of the Academy of Marketing Science*, 48, 114-131. <https://doi.org/10.1007/s11747-019-00694-2>

Ladkin, D., & Patrick, C. B. (2022). Whiteness in leadership theorizing: A critical analysis of race in Bass' transformational leadership theory. *Leadership*, 18(2), 205-223. <https://doi.org/10.1177/17427150211066442>

Leppälä, K. (2022). Practices in medical device innovation: navigation and enactment as social practice trades.

Mikalef, P., Boura, M., Lekakos, G., & Krogstie, J. (2019). Big data analytics and firm performance: Findings from a mixed-method approach. *Journal of Business Research*, 98, 261-276. <https://doi.org/10.1016/j.jbusres.2019.01.044>

Perez, J. E. (2024). *Leading With Vulnerability: Exploring the Effects on Perceptions of Psychological Safety and Leader Competence*. The George Washington University.

Popo-Olaniyan, O., James, O. O., Udeh, C. A., Daraojimba, R. E., & Ogedengbe, D. E. (2022). REVIEW OF ADVANCING US INNOVATION THROUGH COLLABORATIVE HR ECOSYSTEMS: A SECTOR-WIDE PERSPECTIVE. *International Journal of Management & Entrepreneurship Research*, 4(12), 623-640. <https://doi.org/10.51594/ijmer.v4i12.675>

Sabel, C. F., & Victor, D. G. (2022). Fixing the climate: Strategies for an uncertain world.

Serrat, O. (2021). Techtonic: The role of technology in organizations. *Unpublished manuscript, The Chicago School of Professional Psychology*.

Sugiarti, E. (2022). The Influence of Training, Work Environment and Career Development on Work Motivation That Has an Impact on Employee Performance at PT. Suryamas Elsindo Primatama In West Jakarta. *International Journal of Artificial Intelligence Research*, 6(1), 1-11. <https://doi.org/10.29099/ijair.v6i1.304>

Tangi, L., Janssen, M., Benedetti, M., & Noci, G. (2021). Digital government transformation: A structural equation modelling analysis of driving and impeding factors. *International Journal of Information Management*, 60, 102356. <https://doi.org/10.1016/j.ijinfomgt.2021.102356>

Tidd, J., & Bessant, J. R. (2020). *Managing innovation: integrating technological, market and organizational change*. John Wiley & Sons.

Wang, Z., Li, M., Lu, J., & Cheng, X. (2022). Business Innovation based on artificial intelligence and Blockchain technology. *Information Processing & Management*, 59(1), 102759. <https://doi.org/10.1016/j.ipm.2021.102759>

West, M. A., & Richter, A. W. (2024). Climates and cultures for innovation and creativity at work. In *Handbook of organizational creativity* (pp. 211-236). Psychology Press.

Wong, R. Y. (2021, May). Using Design Fiction Memos to Analyze UX Professionals' Values Work Practices: A Case Study Bridging Ethnographic and Design Futuring Methods. In *Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems* (pp. 1-18). <https://doi.org/10.1145/3411764.3445709>

Xiao, T., Makhija, M., & Karim, S. (2022). A knowledge recombination perspective of innovation: review and new research directions. *Journal of management*, 48(6), 1724-1777. <https://doi.org/10.1177/01492063211055982>

Ylipukki, H. (2021). Cultural Influence? A study of organizational cultures and their possible influences on employees CSR commitment.